

 [image: MechanicalSoup. A Python library for automating website interaction.]

Welcome to MechanicalSoup’s documentation!

A Python library for automating interaction with websites. MechanicalSoup automatically stores and sends cookies, follows redirects, and can follow links and submit forms. It doesn’t do Javascript.

MechanicalSoup was created by M Hickford [https://github.com/hickford/], who was a fond user of the
Mechanize [https://github.com/jjlee/mechanize] library.
Unfortunately, Mechanize is incompatible with Python 3 [https://github.com/jjlee/mechanize/issues/96] and its development
stalled for several years. MechanicalSoup provides a similar API, built on Python
giants Requests [http://docs.python-requests.org/en/latest/] (for
http sessions) and BeautifulSoup [http://www.crummy.com/software/BeautifulSoup/] (for document
navigation). Since 2017 it is a project actively maintained by a small
team including @hemberger [https://github.com/hemberger] and @moy [https://github.com/moy/].

Contents:

	Introduction
	Installation

	MechanicalSoup tutorial
	First contact, step by step

	A more complete example: logging-in into GitHub

	The mechanicalsoup package: API documentation
	StatefulBrowser

	Browser

	Form

	Exceptions

	Frequently Asked Questions
	When to use MechanicalSoup?

	How do I get debug information/logs

	Should I use Browser or StatefulBrowser?

	How does MechanicalSoup compare to the alternatives?

	Form submission has no effect or fails

	My form doesn’t have a unique submit name. What can I do?

	“No parser was explicitly specified”

	“ReferenceError: weakly-referenced object no longer exists”

	External Resources
	External libraries

	MechanicalSoup on the web

	Projects using MechanicalSoup

	Release Notes
	Version 1.3

	Version 1.2

	Version 1.1

	Version 1.0

	Version 0.12

	Version 0.11

	Version 0.10

	Version 0.9

	Version 0.8

	Version 0.7

Indices and tables

	Index

	Module Index

	Search Page

Introduction

[image: Latest Version] [https://pypi.python.org/pypi/MechanicalSoup/] [image: Supported Versions] [https://pypi.python.org/pypi/MechanicalSoup/]

PyPy3 is also supported (and tested against).

Find MechanicalSoup on Python Package Index (Pypi) [https://pypi.python.org/pypi/MechanicalSoup/] and follow the
development on GitHub [https://github.com/MechanicalSoup/MechanicalSoup].

Installation

Download and install the latest released version from PyPI [https://pypi.python.org/pypi/MechanicalSoup/]:

pip install MechanicalSoup

Download and install the development version from GitHub:

pip install git+https://github.com/MechanicalSoup/MechanicalSoup

Installing from source (installs the version in the current working directory):

git clone https://github.com/MechanicalSoup/MechanicalSoup.git
cd MechanicalSoup
python setup.py install

(In all cases, add --user to the install command to
install in the current user’s home directory.)

Example code: https://github.com/MechanicalSoup/MechanicalSoup/tree/main/examples/

MechanicalSoup tutorial

First contact, step by step

As a simple example, we’ll browse http://httpbin.org/, a website
designed to test tools like MechanicalSoup.

First, let’s create a browser object:

>>> import mechanicalsoup
>>> browser = mechanicalsoup.StatefulBrowser()

To customize the way to build a browser (change the user-agent, the
HTML parser to use, the way to react to 404 Not Found errors, …),
see __init__().

Now, open the webpage we want:

>>> browser.open("http://httpbin.org/")
<Response [200]>

The return value of open() is an
object of type requests.Response [http://docs.python-requests.org/en/master/api/#requests.Response]. Actually, MechanicalSoup is using
the requests [http://docs.python-requests.org/en/master/] library to do the actual requests to the website, so
there’s no surprise that we’re getting such object. In short, it
contains the data and meta-data that the server sent us. You see the
HTTP response status, 200, which means “OK”, but the object also
contains the content of the page we just downloaded.

Just like a normal browser’s URL bar, the browser remembers which URL
it’s browsing:

>>> browser.url
'http://httpbin.org/'

Now, let’s follow the link to /forms/post:

>>> browser.follow_link("forms")
<Response [200]>
>>> browser.url
'http://httpbin.org/forms/post'

We passed a regular expression "forms"
to follow_link(), who followed
the link whose text matched this expression. There are many other ways
to call follow_link(), but we’ll
get back to it.

We’re now visiting http://httpbin.org/forms/post, which contains a
form. Let’s see the page content:

>>> browser.page
<!DOCTYPE html>
<html>
...
<form action="/post" method="post">
...

Actually, the return type
of page() is
bs4.BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/bs4/doc/#beautifulsoup]. BeautifulSoup, aka bs4, is the second library used
by Mechanicalsoup: it is an HTML manipulation library. You can now
navigate in the tags of the pages using BeautifulSoup. For example, to
get all the <legend> tags:

>>> browser.page.find_all('legend')
[<legend> Pizza Size </legend>, <legend> Pizza Toppings </legend>]

To fill-in a form, we need to tell MechanicalSoup which form we’re
going to fill-in and submit:

>>> browser.select_form('form[action="/post"]')

The argument to select_form() is
a CSS selector. Here, we select an HTML tag named form having an
attribute action whose value is "/post". Since there’s only
one form in the page, browser.select_form() would have done the
trick too.

Now, give a value to fields in the form. First, what are the available
fields? You can print a summary of the currently selected form
with print_summary():

>>> browser.form.print_summary()
<input name="custname"/>
<input name="custtel" type="tel"/>
<input name="custemail" type="email"/>
<input name="size" type="radio" value="small"/>
<input name="size" type="radio" value="medium"/>
<input name="size" type="radio" value="large"/>
<input name="topping" type="checkbox" value="bacon"/>
<input name="topping" type="checkbox" value="cheese"/>
<input name="topping" type="checkbox" value="onion"/>
<input name="topping" type="checkbox" value="mushroom"/>
<input max="21:00" min="11:00" name="delivery" step="900" type="time"/>
<textarea name="comments"></textarea>

For text fields, it’s simple:
just give a value for input element based on their name
attribute:

>>> browser["custname"] = "Me"
>>> browser["custtel"] = "00 00 0001"
>>> browser["custemail"] = "nobody@example.com"
>>> browser["comments"] = "This pizza looks really good :-)"

For radio buttons, well, it’s simple too: radio buttons have several
input tags with the same name and different values, just select
the one you need ("size" is the name attribute, "medium"
is the "value" attribute of the element we want to tick):

>>> browser["size"] = "medium"

For checkboxes, one can use the same mechanism to check one box:

>>> browser["topping"] = "bacon"

But we can also check any number of boxes by assigning a list to the
field:

>>> browser["topping"] = ("bacon", "cheese")

Actually, browser["..."] = "..." (i.e. calls
to __setitem__()) is just a
helper to fill-in a form, but you can use any tool BeautifulSoup
provides to modify the soup object, and MechanicalSoup will take care
of submitting the form for you.

Let’s see what the filled-in form looks like:

>>> browser.launch_browser()

launch_browser() will launch a
real web browser on the current page visited by our browser
object, including the changes we just made to the form (note that it
does not open the real webpage, but creates a temporary file
containing the page content, and points your browser to this file). Try
changing the boxes ticked and the content of the text field, and
re-launch the browser.

This method is very useful in complement with your browser’s web
development tools. For example, with Firefox, right-click “Inspect
Element” on a field will give you everything you need to manipulate
this field (in particular the name and value attributes).

It’s also possible to check the content
with print_summary() (that we already
used to list the fields):

>>> browser.form.print_summary()
<input name="custname" value="Me"/>
<input name="custtel" type="tel" value="00 00 0001"/>
<input name="custemail" type="email" value="nobody@example.com"/>
<input name="size" type="radio" value="small"/>
<input checked="" name="size" type="radio" value="medium"/>
<input name="size" type="radio" value="large"/>
<input checked="" name="topping" type="checkbox" value="bacon"/>
<input checked="" name="topping" type="checkbox" value="cheese"/>
<input name="topping" type="checkbox" value="onion"/>
<input name="topping" type="checkbox" value="mushroom"/>
<input max="21:00" min="11:00" name="delivery" step="900" type="time"/>
<textarea name="comments">This pizza looks really good :-)</textarea>

Assuming we’re satisfied with the content of the form, we can submit
it (i.e. simulate a click on the submit button):

>>> response = browser.submit_selected()

The response is not an HTML page, so the browser doesn’t parse it to a
BeautifulSoup object, but we can still see the text it contains:

>>> print(response.text)
{
 "args": {},
 "data": "",
 "files": {},
 "form": {
 "comments": "This pizza looks really good :-)",
 "custemail": "nobody@example.com",
 "custname": "Me",
 "custtel": "00 00 0001",
 "delivery": "",
 "size": "medium",
 "topping": [
 "bacon",
 "cheese"
]
 },
...

To sum up, here is the complete example (examples/expl_httpbin.py [https://github.com/MechanicalSoup/MechanicalSoup/blob/main/examples/expl_httpbin.py]):

import mechanicalsoup

browser = mechanicalsoup.StatefulBrowser()
browser.open("http://httpbin.org/")

print(browser.url)
browser.follow_link("forms")
print(browser.url)
print(browser.page)

browser.select_form('form[action="/post"]')
browser["custname"] = "Me"
browser["custtel"] = "00 00 0001"
browser["custemail"] = "nobody@example.com"
browser["size"] = "medium"
browser["topping"] = "onion"
browser["topping"] = ("bacon", "cheese")
browser["comments"] = "This pizza looks really good :-)"

Uncomment to launch a real web browser on the current page.
browser.launch_browser()

Uncomment to display a summary of the filled-in form
browser.form.print_summary()

response = browser.submit_selected()
print(response.text)

A more complete example: logging-in into GitHub

The simplest way to use MechanicalSoup is to use
the StatefulBrowser class (this example is
available as examples/example.py [https://github.com/MechanicalSoup/MechanicalSoup/blob/main/examples/example.py]
in MechanicalSoup’s source code):

"""Example app to login to GitHub using the StatefulBrowser class.

NOTE: This example will not work if the user has 2FA enabled."""

import argparse
from getpass import getpass

import mechanicalsoup

parser = argparse.ArgumentParser(description="Login to GitHub.")
parser.add_argument("username")
args = parser.parse_args()

args.password = getpass("Please enter your GitHub password: ")

browser = mechanicalsoup.StatefulBrowser(
 soup_config={'features': 'lxml'},
 raise_on_404=True,
 user_agent='MyBot/0.1: mysite.example.com/bot_info',
)
Uncomment for a more verbose output:
browser.set_verbose(2)

browser.open("https://github.com")
browser.follow_link("login")
browser.select_form('#login form')
browser["login"] = args.username
browser["password"] = args.password
resp = browser.submit_selected()

Uncomment to launch a web browser on the current page:
browser.launch_browser()

verify we are now logged in
page = browser.page
messages = page.find("div", class_="flash-messages")
if messages:
 print(messages.text)
assert page.select(".logout-form")

print(page.title.text)

verify we remain logged in (thanks to cookies) as we browse the rest of
the site
page3 = browser.open("https://github.com/MechanicalSoup/MechanicalSoup")
assert page3.soup.select(".logout-form")

Alternatively, one can use the Browser class,
which doesn’t maintain a state from one call to another (i.e. the
Browser itself doesn’t remember which page you are visiting and what
its content is, it’s up to the caller to do so). This example is
available as examples/example_manual.py [https://github.com/MechanicalSoup/MechanicalSoup/blob/main/examples/example_manual.py]
in the source:

"""Example app to login to GitHub, using the plain Browser class.

See example.py for an example using the more advanced StatefulBrowser."""
import argparse

import mechanicalsoup

parser = argparse.ArgumentParser(description="Login to GitHub.")
parser.add_argument("username")
parser.add_argument("password")
args = parser.parse_args()

browser = mechanicalsoup.Browser(soup_config={'features': 'lxml'})

request github login page. the result is a requests.Response object
http://docs.python-requests.org/en/latest/user/quickstart/#response-content
login_page = browser.get("https://github.com/login")

similar to assert login_page.ok but with full status code in case of
failure.
login_page.raise_for_status()

login_page.soup is a BeautifulSoup object
http://www.crummy.com/software/BeautifulSoup/bs4/doc/#beautifulsoup
we grab the login form
login_form = mechanicalsoup.Form(login_page.soup.select_one('#login form'))

specify username and password
login_form.input({"login": args.username, "password": args.password})

submit form
page2 = browser.submit(login_form, login_page.url)

verify we are now logged in
messages = page2.soup.find("div", class_="flash-messages")
if messages:
 print(messages.text)
assert page2.soup.select(".logout-form")

print(page2.soup.title.text)

verify we remain logged in (thanks to cookies) as we browse the rest of
the site
page3 = browser.get("https://github.com/MechanicalSoup/MechanicalSoup")
assert page3.soup.select(".logout-form")

More examples

For more examples, see the examples [https://github.com/MechanicalSoup/MechanicalSoup/blob/main/examples/]
directory in MechanicalSoup’s source code.

The mechanicalsoup package: API documentation

StatefulBrowser

	
class mechanicalsoup.StatefulBrowser(*args, **kwargs)

	Bases: mechanicalsoup.browser.Browser

An extension of Browser that stores the browser’s state
and provides many convenient functions for interacting with HTML elements.
It is the primary tool in MechanicalSoup for interfacing with websites.

	Parameters

	
	session – Attach a pre-existing requests Session instead of
constructing a new one.

	soup_config – Configuration passed to BeautifulSoup to affect
the way HTML is parsed. Defaults to {'features': 'lxml'}.
If overridden, it is highly recommended to specify a parser [https://www.crummy.com/software/BeautifulSoup/bs4/doc/#specifying-the-parser-to-use].
Otherwise, BeautifulSoup will issue a warning and pick one for
you, but the parser it chooses may be different on different
machines.

	requests_adapters – Configuration passed to requests, to affect
the way HTTP requests are performed.

	raise_on_404 – If True, raise LinkNotFoundError
when visiting a page triggers a 404 Not Found error.

	user_agent – Set the user agent header to this value.

All arguments are forwarded to Browser().

Examples

browser = mechanicalsoup.StatefulBrowser(
 soup_config={'features': 'lxml'}, # Use the lxml HTML parser
 raise_on_404=True,
 user_agent='MyBot/0.1: mysite.example.com/bot_info',
)
browser.open(url)
...
browser.close()

Once not used anymore, the browser can be closed
using close().

	
__setitem__(name, value)

	Call item assignment on the currently selected form.
See Form.__setitem__().

	
absolute_url(url)

	Return the absolute URL made from the current URL and url.
The current URL is only used to provide any missing components of
url, as in the .urljoin() method of urllib.parse [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urljoin].

	
download_link(link=None, file=None, *bs4_args, bs4_kwargs={}, requests_kwargs={}, **kwargs)

	Downloads the contents of a link to a file. This function behaves
similarly to follow_link(), but the browser state will
not change when calling this function.

	Parameters

	file – Filesystem path where the page contents will be
downloaded. If the file already exists, it will be overwritten.

Other arguments are the same as follow_link() (link
can either be a bs4.element.Tag or a URL regex.
bs4_kwargs arguments are forwarded to find_link(),
as are any excess keyword arguments (aka **kwargs) for backwards
compatibility).

	Returns

	requests.Response [http://docs.python-requests.org/en/master/api/#requests.Response]
object.

	
find_link(*args, **kwargs)

	Find and return a link, as a bs4.element.Tag object.

The search can be refined by specifying any argument that is accepted
by links(). If several links match, return the first one found.

If no link is found, raise LinkNotFoundError.

	
follow_link(link=None, *bs4_args, bs4_kwargs={}, requests_kwargs={}, **kwargs)

	Follow a link.

If link is a bs4.element.Tag (i.e. from a previous call to
links() or find_link()), then follow the link.

If link doesn’t have a href-attribute or is None, treat
link as a url_regex and look it up with find_link().
bs4_kwargs are forwarded to find_link().
For backward compatibility, any excess keyword arguments
(aka **kwargs)
are also forwarded to find_link().

If the link is not found, raise LinkNotFoundError.
Before raising, if debug is activated, list available links in the
page and launch a browser.

requests_kwargs are forwarded to open_relative().

	Returns

	Forwarded from open_relative().

	
form

	Get the currently selected form as a Form object.
See select_form().

	
get_debug()

	Get the debug mode (off by default).

	
get_verbose()

	Get the verbosity level. See set_verbose().

	
launch_browser(soup=None)

	Launch a browser to display a page, for debugging purposes.

	Param

	soup: Page contents to display, supplied as a bs4 soup object.
Defaults to the current page of the StatefulBrowser instance.

	
links(url_regex=None, link_text=None, *args, **kwargs)

	Return links in the page, as a list of bs4.element.Tag objects.

To return links matching specific criteria, specify url_regex
to match the href-attribute, or link_text to match the
text-attribute of the Tag. All other arguments are forwarded to
the .find_all() method in BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-all].

	
list_links(*args, **kwargs)

	Display the list of links in the current page. Arguments are
forwarded to links().

	
new_control(type, name, value, **kwargs)

	Call Form.new_control() on the currently selected form.

	
open(url, *args, **kwargs)

	Open the URL and store the Browser’s state in this object.
All arguments are forwarded to Browser.get().

	Returns

	Forwarded from Browser.get().

	
open_fake_page(page_text, url=None, soup_config=None)

	Mock version of open().

Behave as if opening a page whose text is page_text, but do not
perform any network access. If url is set, pretend it is the page’s
URL. Useful mainly for testing.

	
open_relative(url, *args, **kwargs)

	Like open(), but url can be relative to the currently
visited page.

	
page

	Get the current page as a soup object.

	
refresh()

	Reload the current page with the same request as originally done.
Any change (select_form, or any value filled-in in the form) made to
the current page before refresh is discarded.

	Raises

	ValueError – Raised if no refreshable page is loaded, e.g., when
using the shallow Browser wrapper functions.

	Returns

	Response of the request.

	
select_form(selector='form', nr=0)

	Select a form in the current page.

	Parameters

	
	selector – CSS selector or a bs4.element.Tag object to identify
the form to select.
If not specified, selector defaults to “form”, which is
useful if, e.g., there is only one form on the page.
For selector syntax, see the .select() method in BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors].

	nr – A zero-based index specifying which form among those that
match selector will be selected. Useful when one or more forms
have the same attributes as the form you want to select, and its
position on the page is the only way to uniquely identify it.
Default is the first matching form (nr=0).

	Returns

	The selected form as a soup object. It can also be
retrieved later with the form attribute.

	
set_debug(debug)

	Set the debug mode (off by default).

Set to True to enable debug mode. When active, some actions
will launch a browser on the current page on failure to let
you inspect the page content.

	
set_verbose(verbose)

	Set the verbosity level (an integer).

	0 means no verbose output.

	1 shows one dot per visited page (looks like a progress bar)

	>= 2 shows each visited URL.

	
submit_selected(btnName=None, update_state=True, **kwargs)

	Submit the form that was selected with select_form().

	Returns

	Forwarded from Browser.submit().

	Parameters

	
	btnName – Passed to Form.choose_submit() to choose the
element of the current form to use for submission. If None,
will choose the first valid submit element in the form, if one
exists. If False, will not use any submit element; this is
useful for simulating AJAX requests, for example.

	update_state – If False, the form will be submitted but the
browser state will remain unchanged; this is useful for forms that
result in a download of a file, for example.

All other arguments are forwarded to Browser.submit().

	
url

	Get the URL of the currently visited page.

Browser

	
class mechanicalsoup.Browser(session=None, soup_config={'features': 'lxml'}, requests_adapters=None, raise_on_404=False, user_agent=None)

	Builds a low-level Browser.

It is recommended to use StatefulBrowser for most applications,
since it offers more advanced features and conveniences than Browser.

	Parameters

	
	session – Attach a pre-existing requests Session instead of
constructing a new one.

	soup_config – Configuration passed to BeautifulSoup to affect
the way HTML is parsed. Defaults to {'features': 'lxml'}.
If overridden, it is highly recommended to specify a parser [https://www.crummy.com/software/BeautifulSoup/bs4/doc/#specifying-the-parser-to-use].
Otherwise, BeautifulSoup will issue a warning and pick one for
you, but the parser it chooses may be different on different
machines.

	requests_adapters – Configuration passed to requests, to affect
the way HTTP requests are performed.

	raise_on_404 – If True, raise LinkNotFoundError
when visiting a page triggers a 404 Not Found error.

	user_agent – Set the user agent header to this value.

	
static add_soup(response, soup_config)

	Attaches a soup object to a requests response.

	
close()

	Close the current session, if still open.

	
get(*args, **kwargs)

	Straightforward wrapper around requests.Session.get [http://docs.python-requests.org/en/master/api/#requests.Session.get].

	Returns

	requests.Response [http://docs.python-requests.org/en/master/api/#requests.Response]
object with a soup-attribute added by add_soup().

	
get_cookiejar()

	Gets the cookiejar from the requests session.

	
classmethod get_request_kwargs(form, url=None, **kwargs)

	Extract input data from the form.

	
launch_browser(soup)

	Launch a browser to display a page, for debugging purposes.

	Param

	soup: Page contents to display, supplied as a bs4 soup object.

	
post(*args, **kwargs)

	Straightforward wrapper around requests.Session.post [http://docs.python-requests.org/en/master/api/#requests.Session.post].

	Returns

	requests.Response [http://docs.python-requests.org/en/master/api/#requests.Response]
object with a soup-attribute added by add_soup().

	
put(*args, **kwargs)

	Straightforward wrapper around requests.Session.put [http://docs.python-requests.org/en/master/api/#requests.Session.put].

	Returns

	requests.Response [http://docs.python-requests.org/en/master/api/#requests.Response]
object with a soup-attribute added by add_soup().

	
request(*args, **kwargs)

	Straightforward wrapper around requests.Session.request [http://docs.python-requests.org/en/master/api/#requests.Session.request].

	Returns

	requests.Response [http://docs.python-requests.org/en/master/api/#requests.Response]
object with a soup-attribute added by add_soup().

This is a low-level function that should not be called for
basic usage (use get() or post() instead). Use it if you
need an HTTP verb that MechanicalSoup doesn’t manage (e.g. MKCOL) for
example.

	
set_cookiejar(cookiejar)

	Replaces the current cookiejar in the requests session. Since the
session handles cookies automatically without calling this function,
only use this when default cookie handling is insufficient.

	Parameters

	cookiejar – Any http.cookiejar.CookieJar [https://docs.python.org/3/library/http.cookiejar.html#http.cookiejar.CookieJar]
compatible object.

	
set_user_agent(user_agent)

	Replaces the current user agent in the requests session headers.

	
submit(form, url=None, **kwargs)

	Prepares and sends a form request.

NOTE: To submit a form with a StatefulBrowser instance, it is
recommended to use StatefulBrowser.submit_selected() instead of
this method so that the browser state is correctly updated.

	Parameters

	
	form – The filled-out form.

	url – URL of the page the form is on. If the form action is a
relative path, then this must be specified.

	**kwargs – Arguments forwarded to requests.Session.request [http://docs.python-requests.org/en/master/api/#requests.Session.request].
If files, params (with GET), or data (with POST) are
specified, they will be appended to by the contents of form.

	Returns

	requests.Response [http://docs.python-requests.org/en/master/api/#requests.Response]
object with a soup-attribute added by add_soup().

Form

	
class mechanicalsoup.Form(form)

	Build a fillable form.

	Parameters

	form – A bs4.element.Tag corresponding to an HTML form element.

The Form class is responsible for preparing HTML forms for submission.
It handles the following types of elements:
input (text, checkbox, radio), select, and textarea.

Each type is set by a method named after the type (e.g.
set_select()), and then there are convenience methods (e.g.
set()) that do type-deduction and set the value using the
appropriate method.

It also handles submit-type elements using choose_submit().

	
__setitem__(name, value)

	Forwards arguments to set(). For example,
form["name"] = "value" calls form.set("name", "value").

	
check(data)

	For backwards compatibility, this method handles checkboxes
and radio buttons in a single call. It will not uncheck any
checkboxes unless explicitly specified by data, in contrast
with the default behavior of set_checkbox().

	
choose_submit(submit)

	Selects the input (or button) element to use for form submission.

	Parameters

	submit – The bs4.element.Tag (or just its
name-attribute) that identifies the submit element to use. If
None, will choose the first valid submit element in the form,
if one exists. If False, will not use any submit element;
this is useful for simulating AJAX requests, for example.

To simulate a normal web browser, only one submit element must be
sent. Therefore, this does not need to be called if there is only
one submit element in the form.

If the element is not found or if multiple elements match, raise a
LinkNotFoundError exception.

Example:

browser = mechanicalsoup.StatefulBrowser()
browser.open(url)
form = browser.select_form()
form.choose_submit('form_name_attr')
browser.submit_selected()

	
new_control(type, name, value, **kwargs)

	Add a new input element to the form.

The arguments set the attributes of the new element.

	
print_summary()

	Print a summary of the form.

May help finding which fields need to be filled-in.

	
set(name, value, force=False)

	Set a form element identified by name to a specified value.
The type of element (input, textarea, select, …) does not
need to be given; it is inferred by the following methods:
set_checkbox(),
set_radio(),
set_input(),
set_textarea(),
set_select().
If none of these methods find a matching element, then if force
is True, a new element (<input type="text" ...>) will be
added using new_control().

Example: filling-in a login/password form with EULA checkbox

form.set("login", username)
form.set("password", password)
form.set("eula-checkbox", True)

Example: uploading a file through a <input type="file"
name="tagname"> field (provide an open file object,
and its content will be uploaded):

form.set("tagname", open(path_to_local_file, "rb"))

	
set_checkbox(data, uncheck_other_boxes=True)

	Set the checked-attribute of input elements of type “checkbox”
specified by data (i.e. check boxes).

	Parameters

	
	data – Dict of {name: value, ...}.
In the family of checkboxes whose name-attribute is name,
check the box whose value-attribute is value. All boxes in
the family can be checked (unchecked) if value is True (False).
To check multiple specific boxes, let value be a tuple or list.

	uncheck_other_boxes – If True (default), before checking any
boxes specified by data, uncheck the entire checkbox family.
Consider setting to False if some boxes are checked by default when
the HTML is served.

	
set_input(data)

	Fill-in a set of fields in a form.

Example: filling-in a login/password form

form.set_input({"login": username, "password": password})

This will find the input element named “login” and give it the
value username, and the input element named “password” and
give it the value password.

	
set_radio(data)

	Set the checked-attribute of input elements of type “radio”
specified by data (i.e. select radio buttons).

	Parameters

	data – Dict of {name: value, ...}.
In the family of radio buttons whose name-attribute is name,
check the radio button whose value-attribute is value.
Only one radio button in the family can be checked.

	
set_select(data)

	Set the selected-attribute of the first option element
specified by data (i.e. select an option from a dropdown).

	Parameters

	data – Dict of {name: value, ...}.
Find the select element whose name-attribute is name.
Then select from among its children the option element whose
value-attribute is value. If no matching value-attribute
is found, this will search for an option whose text matches
value. If the select element’s multiple-attribute is set,
then value can be a list or tuple to select multiple options.

	
set_textarea(data)

	Set the string-attribute of the first textarea element
specified by data (i.e. set the text of a textarea).

	Parameters

	data – Dict of {name: value, ...}.
The textarea whose name-attribute is name will have
its string-attribute set to value.

	
uncheck_all(name)

	Remove the checked-attribute of all input elements with
a name-attribute given by name.

Exceptions

	
exception mechanicalsoup.LinkNotFoundError

	Bases: Exception

Exception raised when mechanicalsoup fails to find something.

This happens in situations like (non-exhaustive list):

	find_link() is called, but
no link is found.

	The browser was configured with raise_on_404=True and a 404
error is triggered while browsing.

	The user tried to fill-in a field which doesn’t exist in a form
(e.g. browser[“name”] = “val” with browser being a
StatefulBrowser).

	
exception mechanicalsoup.InvalidFormMethod

	Bases: mechanicalsoup.utils.LinkNotFoundError

This exception is raised when a method of Form is used
for an HTML element that is of the wrong type (or is malformed).
It is caught within Form.set() to perform element type deduction.

It is derived from LinkNotFoundError so that a single base class
can be used to catch all exceptions specific to this module.

Frequently Asked Questions

When to use MechanicalSoup?

MechanicalSoup is designed to simulate the behavior of a human using a
web browser. Possible use-case include:

	Interacting with a website that doesn’t provide a webservice API,
out of a browser.

	Testing a website you’re developing

There are also situations when you should not use MechanicalSoup,
like:

	If the website provides a webservice API (e.g. REST), then you
should use this API and you don’t need MechanicalSoup.

	If the website you’re interacting with does not contain HTML pages,
then MechanicalSoup won’t bring anything compared to requests [http://docs.python-requests.org/], so just use requests instead.

	If the website relies on JavaScript, then you probably need a
fully-fledged browser. Selenium [http://www.seleniumhq.org/] may
help you there, but it’s a far heavier solution than MechanicalSoup.

	If the website is specifically designed to interact with humans,
please don’t go against the will of the website’s owner.

How do I get debug information/logs

To understand what’s going on while running a script, you have two
options:

	Use set_verbose() to set the
debug level to 1 (show one dot for each page opened, a poor man’s
progress bar) or 2 (show the URL of each visited page).

	Activate request’s logging:

import requests
import logging

logging.getLogger().setLevel(logging.DEBUG)
requests_log = logging.getLogger("requests.packages.urllib3")
requests_log.setLevel(logging.DEBUG)
requests_log.propagate = True

This will display a much more verbose output, including HTTP status
code for each page visited. Note that unlike MechanicalSoup’s
logging system, this includes URL returning a redirect (e.g. HTTP
301), that are dealt with automatically by requests and not visible
to MechanicalSoup.

Should I use Browser or StatefulBrowser?

Short answer: mechanicalsoup.StatefulBrowser.

mechanicalsoup.Browser is historically the first class that
was introduced in Mechanicalsoup. Using it is a bit verbose, as the
caller needs to store the URL of the currently visited page and
manipulate the current form with a separate
variable. mechanicalsoup.StatefulBrowser is essentially a
superset of mechanicalsoup.Browser, it’s the one you should
use unless you have a good reason to do otherwise.

How does MechanicalSoup compare to the alternatives?

There are other libraries with the same purpose as MechanicalSoup:

	Mechanize [https://github.com/python-mechanize/mechanize/] is an
ancestor of MechanicalSoup (getting its name from the Perl mechanize
module). It was a great tool, but became unmaintained for several
years and didn’t support Python 3. Fortunately, Mechanize got a new
maintainer in 2017 and completed Python 3 support in 2019. Note that
Mechanize is a much bigger piece of code (around 20 times more
lines!) than MechanicalSoup, which is small because it delegates
most of its work to BeautifulSoup and requests.

	RoboBrowser [https://github.com/jmcarp/robobrowser] is very
similar to MechanicalSoup. Both are small libraries built on top of
requests and BeautifulSoup. Their APIs are very similar. Both have an
automated testsuite. As of writing, MechanicalSoup is more actively
maintained (only 1 really active developer and no activity since
2015 on RoboBrowser). RoboBrowser is broken on Python 3.7 [https://github.com/jmcarp/robobrowser/issues/87], and while
there is an easy workaround this is a sign that the lack of activity
is due to the project being abandoned more than to its maturity.

	Selenium [http://selenium-python.readthedocs.io/] is a much
heavier solution: it launches a real web browser (Firefox,
Chrome, …) and controls it with inter-process communication.
Selenium is the right solution if you want to test that a website
works properly with various browsers (e.g. is the JavaScript code
you’re writing compatible with all major browsers on the market?),
and is generally useful when you need JavaScript support.
Though MechanicalSoup does not support JavaScript, it also does not
have the overhead of a real web browser, which makes it a simple and
efficient solution for basic website interactions.

Form submission has no effect or fails

If you believe you are using MechanicalSoup correctly, but form submission
still does not behave the way you expect, the likely explanation is that
the page uses JavaScript to dynamically generate response content when
you submit the form in a real browser. A common symptom is when form
elements are missing required attributes (e.g. if form is missing the
action attribute or an input is missing the name attribute).

In such cases, you typically have two options:

	If you know what content the server expects to receive from form
submission, then you can use MechanicalSoup to manually add that content
using, i.e., new_control(). This is unlikely
to be a reliable solution unless you are testing a website that you own.

	Use a tool that supports JavaScript, like
Selenium [http://selenium-python.readthedocs.io/].
See How does MechanicalSoup compare to the alternatives? for more information.

My form doesn’t have a unique submit name. What can I do?

This answer will help those encountering a “Multiple submit elements match”
error when trying to submit a form.

Since MechanicalSoup uses BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/bs4/doc/]
under the hood, you can uniquely select any element on the page using its many
convenient search functions, e.g. .find() [https://www.crummy.com/software/BeautifulSoup/bs4/doc/#find]
and .select() [https://www.crummy.com/software/BeautifulSoup/bs4/doc/#css-selectors].
Then you can pass that element to choose_submit()
or submit_selected(), assuming it is a
valid submit element.

For example, if you have a form with a submit element only identified by a
unique id="button3" attribute, you can do the following:

br = mechanicalsoup.StatefulBrowser()
br.open(...)
submit = br.page.find('input', id='button3')
form = br.select_form()
form.choose_submit(submit)
br.submit_selected()

“No parser was explicitly specified”

UserWarning: No parser was explicitly specified, so I’m using the
best available HTML parser for this system (“lxml”). This usually
isn’t a problem, but if you run this code on another system, or in a
different virtual environment, it may use a different parser and
behave differently.

Some versions of BeautifulSoup show a harmless warning to encourage
you to specify which HTML parser to use. In MechanicalSoup 0.9, the
default parser is set by MechanicalSoup, so you shouldn’t get the
error anymore (or you should upgrade) unless you specified a
non-standard soup_config argument to the browser’s constructor.

If you specify a soup_config argument, you should include the parser
to use, like:

mechanicalsoup.StatefulBrowser(soup_config={'features': 'lxml', '...': '...'})

Or if you don’t have the parser lxml [http://lxml.de/installation.html] installed:

mechanicalsoup.StatefulBrowser(soup_config={'features': 'parser.html', ...})

See also
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#you-need-a-parser

“ReferenceError: weakly-referenced object no longer exists”

This error can occur within requests’ session.py when called by
the destructor (__del__) of browser. The solution is to
call close() before the end of life of
the object.

Alternatively, you may also use the with statement which closes
the browser for you:

def test_with():
 with mechanicalsoup.StatefulBrowser() as browser:
 browser.open(url)
 # ...
 # implicit call to browser.close() here.

This problem is fixed in MechanicalSoup 0.10, so this is only required
for compatibility with older versions. Code using new versions can let
the browser variable go out of scope and let the garbage collector
close it properly.

External Resources

External libraries

	Requests (HTTP layer): http://docs.python-requests.org/en/master/

	BeautifulSoup (HTML parsing and manipulation):
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

MechanicalSoup on the web

	MechanicalSoup tag on stackoverflow [https://stackoverflow.com/questions/tagged/mechanicalsoup]

	MechanicalSoup on Gitter [https://gitter.im/MechanicalSoup/Lobby]

	News archive:

	opensource.com blog [https://opensource.com/resources/python/web-scraper-crawler]

	Hacker News post [https://news.ycombinator.com/item?id=8012103]

	Reddit
discussion [https://www.reddit.com/r/programming/comments/2aa13s/mechanicalsoup_a_python_library_for_automating/]

Projects using MechanicalSoup

These projects use MechanicalSoup for web scraping. You may want to
look at their source code for real-life examples.

	Chamilo Tools [https://gitlab.com/chamilotools/chamilotools]

	gmusicapi [https://github.com/simon-weber/gmusicapi]: an unofficial API
for Google Play Music

	PatZilla [https://github.com/ip-tools/ip-navigator]: Patent information
research for humans

	TODO: Add your favorite tool here …

Release Notes

Version 1.3

Breaking changes

	To prevent malicious web servers from reading arbitrary files from the
client, files must now be opened explicitly by the user in order to
upload their contents in form submission. For example, instead of:

browser[“upload”] = “/path/to/file”

you would now use:

browser[“upload”] = open(“/path/to/file”, “rb”)

This remediates
CVE-2023-34457 [https://github.com/MechanicalSoup/MechanicalSoup/security/advisories/GHSA-x456-3ccm-m6j4].
Our thanks to @e-c-d for reporting and helping to fix the vulnerability!

Main changes

	Added support for Python 3.11.

	Allow submitting a form with no submit element. This can be achieved by
passing submit=False to StatefulBrowser.submit_selected. Thanks
@alexreg!
[`#480 <https://github.com/MechanicalSoup/MechanicalSoup/pull/411`__]

Version 1.2

Main changes

	Added support for Python 3.10.

	Add support for HTML form-associated elements (i.e. input elements that are
associated with a form by a form attribute, but are not a child element
of the form.)
[#380 [https://github.com/MechanicalSoup/MechanicalSoup/issues/380]]

Bug fixes

	When uploading a file, only the filename is now submitted to the server.
Previously, the full file path was being submitted, which exposed more
local information than users may have been expecting.
[#375 [https://github.com/MechanicalSoup/MechanicalSoup/pull/375]]

Version 1.1

Main changes

	Dropped support for EOL Python versions: 2.7 and 3.5.

	Increased minimum version requirement for requests from 2.0 to 2.22.0
and beautifulsoup4 from 4.4 to 4.7.

	Use encoding from the HTTP request when no HTML encoding is specified.
[#355 [https://github.com/MechanicalSoup/MechanicalSoup/pull/355]]

	Added the put method to the Browser class. This is a light wrapper
around requests.Session.put.
[#359 [https://github.com/MechanicalSoup/MechanicalSoup/pull/359]]

	Don’t override Referer headers passed in by the user.
[#364 [https://github.com/MechanicalSoup/MechanicalSoup/pull/364]]

	StatefulBrowser methods follow_link and download_link
now support passing a dictionary of keyword arguments to
requests, via requests_kwargs. For symmetry, they also
support passing Beautiful Soup args in as bs4_kwargs, although
any excess **kwargs are sent to Beautiful Soup as well, just as
they were previously.
[#368 [https://github.com/MechanicalSoup/MechanicalSoup/pull/368]]

Version 1.0

This is the last release that will support Python 2.7. Thanks to the many
contributors that made this release possible!

Main changes:

	Added support for Python 3.8 and 3.9.

	StatefulBrowser has new properties page, form, and url,
which can be used in place of the methods get_current_page,
get_current_form and get_url respectively (e.g. the new x.page
is equivalent to x.get_current_page()). These methods may be deprecated
in a future release.
[#175 [https://github.com/MechanicalSoup/MechanicalSoup/issues/175]]

	StatefulBrowser.form will raise an AttributeError instead of
returning None if no form has been selected yet. Note that
StatefulBrowser.get_current_form() still returns None for
backward compatibility.

Bug fixes

	Decompose <select> elements with the same name when adding a new
input element to a form.
[#297 [https://github.com/MechanicalSoup/MechanicalSoup/issues/297]]

	The params and data kwargs passed to submit will now properly
be forwarded to the underlying request for GET methods (whereas previously
params was being overwritten by data).
[#343 [https://github.com/MechanicalSoup/MechanicalSoup/pull/343]]

Version 0.12

Main changes:

	Changes in official python version support: added 3.7 and dropped 3.4.

	Added ability to submit a form without updating StatefulBrowser internal
state: submit_selected(..., update_state=False). This means you get a
response from the form submission, but your browser stays on the same page.
Useful for handling forms that result in a file download or open a new tab.

Bug fixes

	Improve handling of form enctype to behave like a real browser.
[#242 [https://github.com/MechanicalSoup/MechanicalSoup/issues/242]]

	HTML type attributes are no longer required to be lowercase.
[#245 [https://github.com/MechanicalSoup/MechanicalSoup/issues/245]]

	Form controls with the disabled attribute will no longer be submitted
to improve compliance with the HTML standard. If you were relying on this
bug to submit disabled elements, you can still achieve this by deleting the
disabled attribute from the element in the Form
object directly.
[#248 [https://github.com/MechanicalSoup/MechanicalSoup/issues/248]]

	When a form containing a file input field is submitted without choosing a
file, an empty filename & content will be sent just like in a real browser.
[#250 [https://github.com/MechanicalSoup/MechanicalSoup/issues/250]]

	<option> tags without a value attribute will now use their text as
the value.
[#252 [https://github.com/MechanicalSoup/MechanicalSoup/pull/252]]

	The optional url_regex argument to follow_link and download_link
was fixed so that it is no longer ignored.
[#256 [https://github.com/MechanicalSoup/MechanicalSoup/pull/256]]

	Allow duplicate submit elements instead of raising a LinkNotFoundError.
[#264 [https://github.com/MechanicalSoup/MechanicalSoup/issues/264]]

Our thanks to the many new contributors in this release!

Version 0.11

This release focuses on fixing bugs related to uncommon HTTP/HTML
scenarios and on improving the documentation.

Bug fixes

	Constructing a Form instance from a
bs4.element.Tag whose tag name is not form will now emit a warning,
and may be deprecated in the future.
[#228 [https://github.com/MechanicalSoup/MechanicalSoup/pull/228]]

	Breaking Change: LinkNotFoundError now derives
from Exception instead of BaseException. While this will bring the
behavior in line with most people’s expectations, it may affect the behavior
of your code if you were heavily relying on this implementation detail in
your exception handling.
[#203 [https://github.com/MechanicalSoup/MechanicalSoup/issues/203]]

	Improve handling of button submit elements. Will now correctly ignore
buttons of type button and reset during form submission, since they
are not considered to be submit elements.
[#199 [https://github.com/MechanicalSoup/MechanicalSoup/pull/199]]

	Do a better job of inferring the content type of a response if the
Content-Type header is not provided.
[#195 [https://github.com/MechanicalSoup/MechanicalSoup/pull/195]]

	Improve consistency of query string construction between MechanicalSoup
and web browsers in edge cases where form elements have duplicate name
attributes. This prevents errors in valid use cases, and also makes
MechanicalSoup more tolerant of invalid HTML.
[#158 [https://github.com/MechanicalSoup/MechanicalSoup/issues/158]]

Version 0.10

Main changes:

	Added StatefulBrowser.refresh() to reload the current page with the same request.
[#188 [https://github.com/MechanicalSoup/MechanicalSoup/issues/188]]

	StatefulBrowser.follow_link,
StatefulBrowser.submit_selected() and the new
StatefulBrowser.download_link now sets the Referer: HTTP
header to the page from which the link is followed.
[#179 [https://github.com/MechanicalSoup/MechanicalSoup/issues/179]]

	Added method StatefulBrowser.download_link, which will download the
contents of a link to a file without changing the state of the browser.
[#170 [https://github.com/MechanicalSoup/MechanicalSoup/issues/170]]

	The selector argument of Browser.select_form can now be a
bs4.element.Tag [https://www.crummy.com/software/BeautifulSoup/bs4/doc/#tag]
in addition to a CSS selector.
[#169 [https://github.com/MechanicalSoup/MechanicalSoup/issues/169]]

	Browser.submit and StatefulBrowser.submit_selected accept a larger
number of keyword arguments. Arguments are forwarded to
requests.Session.request [http://docs.python-requests.org/en/master/api/#requests.Session.request].
[#166 [https://github.com/MechanicalSoup/MechanicalSoup/pull/166]]

Internal changes:

	StatefulBrowser.choose_submit will now ignore input elements that are
missing a name-attribute instead of raising a KeyError.
[#180 [https://github.com/MechanicalSoup/MechanicalSoup/issues/180]]

	Private methods Browser._build_request and Browser._prepare_request
have been replaced by a single method Browser._request.
[#166 [https://github.com/MechanicalSoup/MechanicalSoup/pull/166]]

Version 0.9

Main changes:

	We do not rely on BeautifulSoup’s default choice of HTML parser.
Instead, we now specify lxml as default. As a consequence, the
default setting requires lxml as a dependency.

	Python 2.6 and 3.3 are no longer supported.

	The GitHub URL moved from
https://github.com/hickford/MechanicalSoup/ to
https://github.com/MechanicalSoup/MechanicalSoup. @moy and
@hemberger are now officially administrators of the project in
addition to @hickford, the original author.

	We now have a documentation site: https://mechanicalsoup.readthedocs.io/.
The API is now fully documented, and we have included a tutorial,
several more code examples, and a FAQ.

	StatefulBrowser.select_form can now be called without argument,
and defaults to "form" in this case. It also has a new argument,
nr (defaults to 0), which can be used to specify the index of
the form to select if multiple forms match the selection criteria.

	We now use requirement files. You can install the dependencies of
MechanicalSoup with e.g.:

pip install -r requirements.txt -r tests/requirements.txt

	The Form class was restructured and has a new API. The behavior of
existing code is unchanged, but a new collection of methods has been
added for clarity and consistency with the set method:

	set_input deprecates input

	set_textarea deprecates textarea

	set_select is new

	set_checkbox and set_radio together deprecate check
(checkboxes are handled differently by default)

	A new Form.print_summary method allows you to write
browser.get_current_form().print_summary() to get a summary of the
fields you need to fill-in (and which ones are already filled-in).

	The Form class now supports selecting multiple options in
a <select multiple> element.

Bug fixes

	Checking checkboxes with browser["name"] = ("val1", "val2") now
unchecks all checkbox except the ones explicitly specified.

	StatefulBrowser.submit_selected and StatefulBrowser.open now
reset __current_page to None when the result is not an HTML page.
This fixes a bug where __current_page was still the previous page.

	We don’t error out anymore when trying to uncheck a box which
doesn’t have a checkbox attribute.

	Form.new_control now correctly overrides existing elements.

Internal changes

	The testsuite has been further improved and reached 100% coverage.

	Tests are now run against the local version of MechanicalSoup, not
against the installed version.

	Browser.add_soup will now always attach a soup-attribute.
If the response is not text/html, then soup is set to None.

	Form.set(force=True) creates an <input type=text ...>
element instead of an <input type=input ...>.

Version 0.8

Main changes:

	Browser and StatefulBrowser can now be configured to raise a
LinkNotFound exception when encountering a 404 Not Found error.
This is activated by passing raise_on_404=True to the constructor.
It is disabled by default for backward compatibility, but is highly
recommended.

	Browser now has a __del__ method that closes the current session
when the object is deleted.

	A Link object can now be passed to follow_link.

	The user agent can now be customized. The default includes
MechanicalSoup and its version.

	There is now a direct interface to the cookiejar in *Browser
classes ((set|get)_cookiejar methods).

	This is the last MechanicalSoup version supporting Python 2.6 and
3.3.

Bug fixes:

	We used to crash on forms without action=”…” fields.

	The choose_submit method has been fixed, and the btnName
argument of StatefulBrowser.submit_selected is now a shortcut for
using choose_submit.

	Arguments to open_relative were not properly forwarded.

Internal changes:

	The testsuite has been greatly improved. It now uses the pytest API
(not only the pytest launcher) for more concise code.

	The coverage of the testsuite is now measured with codecov.io. The
results can be viewed on:
https://codecov.io/gh/hickford/MechanicalSoup

	We now have a requires.io badge to help us tracking issues with
dependencies. The report can be viewed on:
https://requires.io/github/hickford/MechanicalSoup/requirements/

	The version number now appears in a single place in the source code.

Version 0.7

see Git history, no changelog sorry.

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 mechanicalsoup	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U

_

 	
 	__setitem__() (mechanicalsoup.Form method)

 	(mechanicalsoup.StatefulBrowser method)

A

 	
 	absolute_url() (mechanicalsoup.StatefulBrowser method)

 	
 	add_soup() (mechanicalsoup.Browser static method)

B

 	
 	Browser (class in mechanicalsoup)

C

 	
 	check() (mechanicalsoup.Form method)

 	
 	choose_submit() (mechanicalsoup.Form method)

 	close() (mechanicalsoup.Browser method)

D

 	
 	download_link() (mechanicalsoup.StatefulBrowser method)

F

 	
 	find_link() (mechanicalsoup.StatefulBrowser method)

 	follow_link() (mechanicalsoup.StatefulBrowser method)

 	
 	Form (class in mechanicalsoup)

 	form (mechanicalsoup.StatefulBrowser attribute)

G

 	
 	get() (mechanicalsoup.Browser method)

 	get_cookiejar() (mechanicalsoup.Browser method)

 	
 	get_debug() (mechanicalsoup.StatefulBrowser method)

 	get_request_kwargs() (mechanicalsoup.Browser class method)

 	get_verbose() (mechanicalsoup.StatefulBrowser method)

I

 	
 	InvalidFormMethod

L

 	
 	launch_browser() (mechanicalsoup.Browser method)

 	(mechanicalsoup.StatefulBrowser method)

 	
 	LinkNotFoundError

 	links() (mechanicalsoup.StatefulBrowser method)

 	list_links() (mechanicalsoup.StatefulBrowser method)

M

 	
 	mechanicalsoup (module)

N

 	
 	new_control() (mechanicalsoup.Form method)

 	(mechanicalsoup.StatefulBrowser method)

O

 	
 	open() (mechanicalsoup.StatefulBrowser method)

 	
 	open_fake_page() (mechanicalsoup.StatefulBrowser method)

 	open_relative() (mechanicalsoup.StatefulBrowser method)

P

 	
 	page (mechanicalsoup.StatefulBrowser attribute)

 	post() (mechanicalsoup.Browser method)

 	
 	print_summary() (mechanicalsoup.Form method)

 	put() (mechanicalsoup.Browser method)

R

 	
 	refresh() (mechanicalsoup.StatefulBrowser method)

 	
 	request() (mechanicalsoup.Browser method)

S

 	
 	select_form() (mechanicalsoup.StatefulBrowser method)

 	set() (mechanicalsoup.Form method)

 	set_checkbox() (mechanicalsoup.Form method)

 	set_cookiejar() (mechanicalsoup.Browser method)

 	set_debug() (mechanicalsoup.StatefulBrowser method)

 	set_input() (mechanicalsoup.Form method)

 	set_radio() (mechanicalsoup.Form method)

 	
 	set_select() (mechanicalsoup.Form method)

 	set_textarea() (mechanicalsoup.Form method)

 	set_user_agent() (mechanicalsoup.Browser method)

 	set_verbose() (mechanicalsoup.StatefulBrowser method)

 	StatefulBrowser (class in mechanicalsoup)

 	submit() (mechanicalsoup.Browser method)

 	submit_selected() (mechanicalsoup.StatefulBrowser method)

U

 	
 	uncheck_all() (mechanicalsoup.Form method)

 	
 	url (mechanicalsoup.StatefulBrowser attribute)

 _static/ajax-loader.gif

_images/mechanical-soup-logo.png
(’\Ql'

MechanicalSoup

A Python library for automating website interaction.

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to MechanicalSoup’s documentation!

 		
 Introduction

 		
 Installation

 		
 MechanicalSoup tutorial

 		
 First contact, step by step

 		
 A more complete example: logging-in into GitHub

 		
 More examples

 		
 The mechanicalsoup package: API documentation

 		
 StatefulBrowser

 		
 Browser

 		
 Form

 		
 Exceptions

 		
 Frequently Asked Questions

 		
 When to use MechanicalSoup?

 		
 How do I get debug information/logs

 		
 Should I use Browser or StatefulBrowser?

 		
 How does MechanicalSoup compare to the alternatives?

 		
 Form submission has no effect or fails

 		
 My form doesn’t have a unique submit name. What can I do?

 		
 “No parser was explicitly specified”

 		
 “ReferenceError: weakly-referenced object no longer exists”

 		
 External Resources

 		
 External libraries

 		
 MechanicalSoup on the web

 		
 Projects using MechanicalSoup

 		
 Release Notes

 		
 Version 1.3

 		
 Breaking changes

 		
 Main changes

 		
 Version 1.2

 		
 Main changes

 		
 Bug fixes

 		
 Version 1.1

 		
 Main changes

 		
 Version 1.0

 		
 Main changes:

 		
 Bug fixes

 		
 Version 0.12

 		
 Main changes:

 		
 Bug fixes

 		
 Version 0.11

 		
 Bug fixes

 		
 Version 0.10

 		
 Main changes:

 		
 Internal changes:

 		
 Version 0.9

 		
 Main changes:

 		
 Bug fixes

 		
 Internal changes

 		
 Version 0.8

 		
 Main changes:

 		
 Bug fixes:

 		
 Internal changes:

 		
 Version 0.7

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

